Abstract

In nature there is no phenomenon that is purely periodic, and this gives the idea to consider the measure pseudo almost periodic oscillation. In this paper, by employing a suitable fixed point theorem, the properties of the measure pseudo almost periodic functions and differential inequality, we investigate the existence and uniqueness of the measure pseudo almost periodic solutions for some models of Lasota–Wazewska equation with measure pseudo almost periodic coefficients and mixed delays. We suppose that the linear part has almost periodic and the nonlinear part is assumed to be measure pseudo almost periodic. Moreover, the global attractivity and the exponential stability of the measure pseudo almost periodic solutions are also considered for the system. As application, an illustrative numerical example is given to demonstrate the effectiveness of the obtained results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.