Abstract

Relative permeability as an important petrophysical parameter is often measured directly in the laboratory or obtained indirectly from the capillary pressure data. However, the literature on relationship between relative permeability and resistivity is lacking. To this end, a new model of inferring two-phase relative permeability from resistivity index data was derived on the basis of Poiseuille's law and Darcy's law. The wetting phase tortuosity ratio was included in the proposed model. The relative permeabilities computed from the capillary pressure data, as well as the experimental data measured in gas–water and oil–water flow condition, were compared with the proposed model. Both results demonstrated that the two-phase permeability obtained by proposed model were generally in good agreement with the data computed from capillary pressure and measured in the laboratory. The comparison also showed that our model was much better than Li model at matching the relative permeability data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.