Abstract
In this work, we studied the problem of determining the values of the Zagreb indices of all the realizations of a given degree sequence. We first obtained some new relations between the first and second Zagreb indices and the forgotten index sometimes called the third Zagreb index. These relations also include the triangular numbers, order, size, and the biggest vertex degree of a given graph. As the first Zagreb index and the forgotten index of all the realizations of a given degree sequence are fixed, we concentrated on the values of the second Zagreb index and studied several properties including the effect of vertex addition. In our calculations, we make use of a new graph invariant, called omega invariant, to reach numerical and topological values claimed in the theorems. This invariant is closely related to Euler characteristic and the cyclomatic number of graphs. Therefore this invariant is used in the calculation of some parameters of the molecular structure under review in terms of vertex degrees, eccentricity, and distance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.