Abstract

Abstract Lithium–sulfur (Li-S) batteries are promising energy storage devices owing to their high energy density and the low cost of sulfur. However, they are still far from being applied commercially because of the detrimental capacity fade caused by the dissolution of lithium polysulfide (LPS) in liquid electrolyte. In this study, we introduced a new polymer binder having a redox-mediating function that assists in the reduction of soluble LPS to Li2S at the cathode to suppress the shuttle effect as well as enhance sulfur utilization. An amine group containing benzo(ghi)perylene imide (BPI) was synthesized and grafted onto poly(acrylic acid) to produce a redox-mediating polymer binder. An Li-S cell fabricated using the new redox-mediating polymer binder demonstrated a capacity decay retention of 0.036% per cycle up to 500 cycles at 0.5 C with a coulombic efficiency of 98%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.