Abstract

In this letter, we propose a new type of recursive least squares (RLS) algorithms without using the initial information of a parameter or a state to be estimated. The proposed RLS algorithm is first obtained for a generic linear model and is then extended to a state estimator for a stochastic state-space model. Compared with the existing algorithms, the proposed RLS, algorithms are simpler and more numerically stable. It is shown through simulation that the proposed RLS algorithms have better numerical stability for digital computations than existing algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.