Abstract

The effect of deuterium (D) presence on the amount of displacement damage created in tungsten (W) during high-energy W-ion irradiation is investigated. For this purpose, we have performed modelling of experimental results where W was sequentially or simultaneously irradiated by 10.8 MeV W ions and exposed to 300 eV D ions. A novel displacement damage creation and stabilization model was newly developed and introduced into the MHIMS-Reservoir (migration of hydrogen isotopes in materials) code. It employs macroscopic rate equations (MREs) for solving the evolution of solute and trapped D concentrations in the material.The new displacement damage creation and stabilization model is based on spontaneous recombination of Frenkel pairs and stabilization of defects that are occupied by D atoms. By using the new model, we could successfully replicate the measured D depth profiles and D thermal desorption data, where a higher defect concentration was observed when D was present during W irradiation as compared to when no D was present. For this we utilized parameters, which include the number of distinct defect types, the de-trapping energies of their fill-levels, their saturation concentrations and their probability for stabilization if they contain a D during the W-ion irradiation. To successfully replicate the experimental results three distinct defect types were needed with several fill-levels. By comparing the de-trapping energies of the defect fill-levels with data available from the literature, the defect types were identified as single-vacancies, small vacancy clusters and large vacancy clusters. The effect of D presence was found to be largest in single vacancies as its concentration increased by about a factor of three, while the concentration of small vacancy clusters increased by about a factor of two. Large vacancy clusters were found to be largely unaffected as they showed very little increase in concentration when D was present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call