Abstract

This paper presents the rare earth doping effect on the structural, optical, and magnetic properties of bilayered Ruddlesden-Popper oxides Sr2La0.5R0.5FeMnO7 (R = La, Nd, Sm, Gd, Dy). Moreover, we are reporting for the first time a new rare earth-doped bilayered perovskite oxide series for the highly toxic methylene blue dye degradation in wastewater under visible light. Structural analysis of the PXRD data using the Rietveld refinements confirms the formation of the phases in tetragonal symmetry with the I4/mmm space group. The unit cell lattice parameters (a & c) and the cell volume (V) decrease monotonically from La- to Dy-doped samples owing to the decrease in the lanthanide ionic radii. The X-ray photoelectron spectroscopy analysis indicates the existence of the Mn ions in the mixed valence state. The DRS study shows that the energy band gap value decreases on moving from La to Gd substitution; however, it further increases for the Dy-doped sample. The magnetic measurements reveal that all the phases exhibit dominant anti-ferromagnetic interactions with Neel temperature (T N) observed at 150, 147, 138, 113, and 117 K for La-, Nd-, Sm-, Gd-, and Dy-substituted phases, respectively. However, the presence of an unsaturated hysteresis loop observed in the isothermal magnetic field (H) vs magnetization (M) plot also indicates the existence of weak ferromagnetic interactions. The investigation of the photocatalytic activity of the synthesized samples was done by carrying out photo-oxidative degradation of methylene blue (MB) dye pollutants. The results show that the photodegradation enhances by doping with heavier rare earth ions with the exception of the Dy-doped sample. The Gd-doped catalyst shows the maximum degradation efficiency of 99.03% in 50 min under visible light irradiation. The scavenging experiments confirmed that the·OH was the main/dominant oxidizing agent involved in the degradation of the MB dye.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call