Abstract

A hypersurface in a Riemannian manifold is r-minimal if its (r+1)-curvature, the (r+1)th elementary symmetric function of its principal curvatures, vanishes identically. If n>2(r+1) we show that the rotationally invariant r-minimal hypersurfaces in ℝn+1 are nondegenerate in the sense that they carry no nontrivial Jacobi fields decaying rapidly enough at infinity. Combining this with a computation of the (r+1)-curvature of normal graphs and the deformation theory in weighted Holder spaces developed by Mazzeo, Pacard, Pollack, Uhlenbeck and others, we produce new infinite dimensional families of r-minimal hypersurfaces in ℝn+1 obtained by perturbing noncompact portions of the catenoids. We also consider the moduli space \({\mathcal{M}}_{r,k}(g)\) of elliptic r-minimal hypersurfaces with k≥2 ends of planar type in ℝn+1 endowed with an ALE metric g, and show that \({\mathcal{M}}_{r,k}(g)\) is an analytic manifold of formal dimension k(n+1), with \({\mathcal{M}}_{r,k}(g)\) being smooth for a generic g in a neighborhood of the standard Euclidean metric.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.