Abstract

In this paper, new quaternized cellulose derivative based on Ethylenediaminetetraacetic acid (EDTA) and hydroxyethyl cellulose (HEC) is successfully prepared in homogeneous medium. The resulted product is characterized using spectroscopy techniques (FTIR, 1H NMR and 13C NMR). At the supramolecular level, the x-ray patterns show that a high hydrogen bond density occurs by grafting EDTA on the HEC fibers. The new adsorbent (HEC-EDTA) shows a high adsorption capacity of heavy metals (Pb (II) and Cu (II)) from aqueous metals solutions. The adsorption of the both metal ions follows the pseudo-second-order kinetic model, while the adsorption isotherms are well described by the Langmuir model. The qm values are determined for Pb (II) and Cu (II), respectively. For each metal, the equilibrium adsorption time is found to be 30min. Moreover, the HEC-EDTA adsorption capacity is strongly dependent on the pH value; and the adsorption is favorable for pH values ​​between 4 and 6. Moreover, the results show a high affinity toward Cu (II) than Pb (II).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call