Abstract

Quasi-exactly solvable Schrodinger operators have the remarkable property that a part of their spectrum can be computed by algebraic methods. Such operators lie in the enveloping algebra of a finite-dimensional Lie algebra of first order differential operators—the “hidden symmetry algebra”. In this paper we develop some general techniques for constructing quasi-exactly solvable operators. Our methods are applied to provide a wide variety of new explicit two-dimensional examples (on both flat and curved spaces) of quasi-exactly solvable Hamiltonians, corresponding to both semisimple and more general classes of Lie algebras.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.