Abstract

Sensitive methods for quantitative elemental analysis of micro-sized samples are limited. In this study, total-reflection X-ray fluorescence (TXRF) method was applied as fast and cost-efficient method to apatite microcrystals. In situ acid digestion based on direct treatment of single crystal onto the carrier was used as sample preparation strategy. Since the internal standard addition is complicated in the case of micro-sized samples, new quantification approaches based on external calibration for TXRF analysis of apatite were offered. An experimental design was created for apatite samples with a differentiation of specimen masses from 1.0 to 100 μg to find patterns in the spectral information. A workflow has been proposed for analyzing apatite crystals of various sizes (100, 500, 1000 µm) with TXRF based on an external calibration using an apatite powder sample as a standard and normalizing the spectra to the P-Kα and Mo-Kα peaks. The conditions of the workflow should be the following: Ca/P ratio is in a range between 19 and 23, and a dead time value does not exceed 4.0 %. The dead time value was used as a main factor of quantification, when calibration sample should match the unknown sample. Limit of detection values of the proposed method are from 1.0 to 100 μg/g depending on the crystal size and element of interest. Validation of the TXRF method was performed by analysis of Durango and McClure apatite samples. Comparison of TXRF results with laser ablation inductively coupled plasma mass spectrometry data showed the good agreement between two methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.