Abstract
A large number of computer-based prediction methods to determine the potential of chemicals to induce mutations at the gene level has been developed over the last decades. Conversely, only few such methods are currently available to predict potential structural and numerical chromosome aberrations. Even fewer of these are based on the preferred testing method for this endpoint, i.e. the micronucleus test. For the present work, in vivo micronucleus test results of 718 structurally diverse compounds were collected and applied for the construction of new models by means of the freely available SARpy in silico model building software. Multiple QSAR models were created using parameter variation and manual verification of (non-) alerting structures. To this extent, the original set of 718 compounds was split into a training (80 %) and a test (20 %) set. SARpy was applied on the training set to automatically extract sets of rules by generating and selecting substructures based on their prediction performance whereas the test set was used to evaluate model performance. Five different splits were made randomly, each of which had a similar balance between positive and negative substances compared to the full dataset. All generated models were characterised by an overall better performance than existing free and commercial models for the same endpoint, while demonstrating high coverage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.