Abstract

The braid groups are infinite non-commutative groups naturally arising from geometric braids. The aim of this article is twofold. One is to show that the braid groups can serve as a good source to enrich cryptography. The feature that makes the braid groups useful to cryptography includes the followings: (i) The word problem is solved via a fast algorithm which computes the canonical form which can be efficiently manipulated by computers. (ii) The group operations can be performed efficiently. (iii) The braid groups have many mathematically hard problems that can be utilized to design cryptographic primitives. The other is to propose and implement a new key agreement scheme and public key cryptosystem based on these primitives in the braid groups. The efficiency of our systems is demonstrated by their speed and information rate. The security of our systems is based on topological, combinatorial and group-theoretical problems that are intractible according to our current mathematical knowledge. The foundation of our systems is quite different from widely used cryptosystems based on number theory, but there are some similarities in design.Key wordspublic key cryptosystembraid groupconjugacy problemkey exchangehard problemnon-commutative groupone-way functionpublic key infrastructure

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call