Abstract

An outer membrane protein A (OmpA) from Acinetobacter sp. strain SA01 was identified and characterized in-depth based on the structural and functional characteristics already known of its homologues. In silico structural studies showed that this protein can be a slow porin, binds to peptidoglycan, and exhibits emulsifying properties. Characterization of the recombinant SA01-OmpA, based on its emulsifying properties, represented its promising potentials in biotechnology. Also, the presence of SA01-OmpA in outer membrane vesicles (OMV) and biofilm showed that this protein, like its homologues in Acinetobacter baumannii, can be secreted into the extracellular environment through OMVs and play a role in the formation of biofilm. After ensuring the correct selection of the protein of interest, the role of oxidative stress induced by cell nutritional parameters (utilization of specific carbon sources) on the expression level of OmpA was carefully studied. For this purpose, the oxidative stress level of SA01 cell cultures in the presence of three nonrelevant carbon sources (sodium acetate, ethanol, and phenol) was examined under each condition. High expression of SA01-OmpA in ethanol- and phenol-fed cells with higher levels of oxidative stress than acetate suggested that oxidative stress could be a substantial factor in the regulation of SA01-OmpA expression. The significant association of SA01-OmpA expression with the levels of oxidative stress induced by cadmium and H2O2, with oxidative stress-inducing properties and lack of nutritional value, confirmed that the cells tend to harness their capacities with a possible increase in OmpA production. Collectively, this study suggests a homeostasis role for OmpA in Acinetobacter sp. SA01 under oxidative stress besides assuming many other roles hitherto attributed to this protein.IMPORTANCE Acinetobacter OmpA is known as a multifaceted protein with multiple functions, including emulsifying properties. Bioemulsifiers are surface-active compounds that can disperse hydrophobic compounds in water and help increase the bioavailability of hydrophobic hydrocarbons to be used by degrading microorganisms. In this study, an OmpA from Acinetobacter sp. SA01 was identified and introduced as an emulsifier with a higher emulsifying capacity than Pseudomonas aeruginosa rhamnolipid. We also showed that the expression of this protein is not dependent on the nutritional requirements but is more influenced by the oxidative stress caused by stressors. This finding, along with the structural role of this protein as a slow porin or its role in OMV biogenesis and biofilm formation, suggests that this protein can play an important role in maintaining cellular homeostasis under oxidative stress conditions. Altogether, the present study provides a new perspective on the functional performance of Acinetobacter OmpA, which can be used both to optimize its production as an emulsifier and a target in the treatment of multidrug-resistant strains.

Highlights

  • An outer membrane protein A (OmpA) from Acinetobacter sp. strain SA01 was identified and characterized in-depth based on the structural and functional characteristics already known of its homologues

  • It was concluded that the increase in expression of OmpA could be mostly due to the hydrophobicity of phenol and benzoate, enhancing the bioavailability of hydrophobic carbon substrates

  • According to published reports concerning the overexpression of OmpA in Acinetobacter strains, a protein with emulsifying ability, it would appear that the favorable conditions to elevate the level of stress in the cells are of immense importance

Read more

Summary

Introduction

An outer membrane protein A (OmpA) from Acinetobacter sp. strain SA01 was identified and characterized in-depth based on the structural and functional characteristics already known of its homologues. After ensuring the correct selection of the protein of interest, the role of oxidative stress induced by cell nutritional parameters (utilization of specific carbon sources) on the expression level of OmpA was carefully studied. For this purpose, the oxidative stress level of SA01 cell cultures in the presence of three nonrelevant carbon sources (sodium acetate, ethanol, and phenol) was examined under each condition. We aimed to evaluate the importance of the nature of carbon source and oxidative stress induction that resulted from it on OmpA gene expression in a newly characterized phenol-degrading Acinetobacter sp.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call