Abstract

By using analytical and numerical methods the authors study one of the basic models of mathematical physics—the so-called complex Ginzburg-Landau equation [Formula: see text] with the provision that no fluxes exist at the segment boundaries. A new class of solutions is found for this equation. It is shown that among its solutions there are analogs of limiting cycles of the second kind. A value describing these analogs is introduced, and a scenario of its variation depending on the parameters of the problem is given. A new type of spontaneous appearance of symmetry is shown when we go from initial data in the general form to spatially symmetrical solutions describing quasiperiodic regimes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.