Abstract

The Calogero–Bogoyavlenskii–Schiff equation is an important nonlinear evolution model to describe the propagation of Riemann waves. A fractional Calogero–Bogoyavlenskii–Schiff is described based on the conformable derivative for the first time. Some new soliton solutions are acquired with the aid of the extended fractional [Formula: see text] function method and fractional variable method. The two novel mathematical methods are very efficient and concise, which can also be utilized to solve other fractional evolution equations. Furthermore, these derived soliton solutions are illustrated by some 3D and 2D graphs with different fractal parameters and fractal dimensions, which might be helpful to study in plasma physics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call