Abstract
In this paper we establish two new projection-type methods for the solution of monotone linear complementarity problem (LCP). The methods are a combination of the extragradient method and the Newton method, in which the active set strategy is used and only one linear system of equations with lower dimension is solved at each iteration. It is shown that under the assumption of monotonicity, these two methods are globally and linearly convergent. Furthermore, under a nondegeneracy condition they have a finite termination property. At last, the methods are extended to solving monotone affine variational inequality problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.