Abstract

Advanced processing techniques are required to produce functionally graded metal matrix composites due to the metallurgical conditions required during production. In this study, we developed a novel approach for this task by using a combination of two different methods to produce functionally graded 7075 Al/SiCp (5–20 wt.%) composites. The first process was direct semisolid stirring, which was used to prevent particle agglomeration, brittle reaction products, floating or settling of the reinforcements, and poor wettability. The second process was sequential squeeze casting, which enabled liquid diffusion between the two composite layers that were used to produce a functionally graded aluminum matrix composite. Thus, a method was developed to eliminate the problems encountered in the production of particle-reinforced metal matrix composite materials using liquid stirring methods and to produce composite materials with the desired functionally graded structure. The resulting functionally graded material was subjected to spectrometer analyses, density measurements, and metallographic examinations to determine the characteristics of its layers and interfacial zones, as well as to assess the formation of the graded structure. The results indicate the potential of using this new combined manufacturing method, which is efficient and controllable, to produce functionally graded metal matrix composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.