Abstract

AbstractMassive stars often experience fast rotation, which is known to induce turbulent mixing with a strong impact on the evolution of these stars. Local direct numerical simulations of turbulent transport in stellar radiative zones are a promising way to constrain phenomenological transport models currently used in many stellar evolution codes. We present here the results of such simulations of stably-stratified sheared turbulence taking notably into account the effects of thermal diffusion and chemical stratification. We also discuss the impact of theses results on stellar evolution theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.