Abstract

We present tabular and graphic results on the computation of pre-main-sequence evolutionary tracks of Population I stellar structures from 2.5 to approximately 0.015 solar mass. Deuterium and lithium burning are followed in detail. The chosen input physics gives M approximately 0.018 solar mass as minimum mass for deuterium burning and M approximately 0.065 solar mass as minimum mass for lithium burning. While we adopt the approximations of hydrostatic equilibrium, no mass accretion and no mass loss, we have taken care to include several updates in the input physics, among them two different sets of the more recent available low-temperature opacities, and we test two different models of overdiabatic convection (the mixing-available low-temperature opacities, and we test two different models of overdiabatic convection (the mixing-length theory (MLT) with the mixing-length scale calibrated on the solar model, and the recent Canuto &amp; Mazzitelli (CM) model). The Hertzsprung-Russell diagram location of tracks turns out to be largely model-dependent, especially for M less than or equal to 0.6 solar mass, and we are able to relate the cause of the large differences (up to 0.04 dex in T<SUB>eff</SUB> at 0.3 solar mass) with opacity and with the details of the convection model adopted. Since we are not able to provide 'first principle' physical reasons to choose among models, we consider these tracks as 'tests', in the hope that significant comparisons with observations can exclude some models or provide hints toward a better understanding of convection. Nevertheless, we feel obliged to call the reader's attention to the fact that theoretical T<SUB>eff</SUB>'s, especially in the red, are intrinsically ill-determined, and no sound observational interpretation critically depending on the T<SUB>eff</SUB>'s can be presently performed, contrary to the current habit due to an exceedingly 'faithful' use of the MLT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.