Abstract

We propose a new predictor–corrector interior-point algorithm for solving Cartesian symmetric cone horizontal linear complementarity problems, which is not based on a usual barrier function. We generalize the predictor–corrector algorithm introduced in Darvay et al. (SIAM J Optim 30:2628–2658, 2020) to horizontal linear complementarity problems on a Cartesian product of symmetric cones. We apply the algebraically equivalent transformation technique proposed by Darvay (Adv Model Optim 5:51–92, 2003), and we use the difference of the identity and the square root function to determine the new search directions. In each iteration, the proposed algorithm performs one predictor and one corrector step. We prove that the predictor–corrector interior-point algorithm has the same complexity bound as the best known interior-point methods for solving these types of problems. Furthermore, we provide a condition related to the proximity and update parameters for which the introduced predictor-corrector algorithm is well defined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.