Abstract

This paper heralds a mathematical treatment of Segways as autonomous robots for personal transportation and deliveries and courier services in constrained dynamic environments from a bird’s-eye view. New velocity-based stabilizing controllers of an autonomous nonholonomic two-wheeled self-balancing personalized Segway robot are extracted from a total potential developed by employing the Lyapunov-based Control Scheme (LbCS) for navigation in a partially known environment. Velocity controllers’ cost and time effectiveness and efficiency result from the interaction of the three prominent pillars of LbCS: smoothest, shortest, and safest path for motion planning. Furthermore, the autonomous personal transporter has an obstacle avoidance sensor with a limited detection range ideal for fast navigation in dynamic environments with narrow corridors, tracks, and pathways. This also successfully facilitates navigation in a partially known environment where the sensors only receive and avoid static and dynamic obstacles in a limited range. The results are numerically validated, and the efficacy of the new controllers is exemplified via computer simulations, which illustrate the forward, backward, and zero-turn radius maneuvers of the Segway robot. Introducing the particular autonomous personal transporter would contribute to transportation systems of smart cities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.