Abstract

Response Surface Methodology (RSM) was used to investigate how the crude glycerin concentration and the carbon to nitrogen (C:N) ratio in the culture medium affect four indicators of polyhydroxyalkanoates (PHAs) accumulation by mixed microbial cultures (MMC): the observed coefficient of active-biomass yield (Yobs,BA), the observed coefficient of PHA yield (Yobs,PHA), the PHA content in biomass (XPHA) and the volumetric productivity (PrV). The C:N ratio had the largest effect on Yobs,BA and Yobs,PHA. When the C:N ratio was increased, Yobs,BA decreased and Yobs,PHA increased, regardless of the concentration of crude glycerin in the culture medium. The C:N ratio also had the largest effect on the PHA content, whereas volumetric productivity was strongly affected by both the C:N ratio and the crude glycerin concentration. The optimal conditions for PHA accumulation were a crude glycerin concentration of 8954 mg COD/L with a C:N ratio of 15.9 mg C/mg N-NH4, which gave a Yobs,BA of 0.29 mg CODBA/mg COD, a Yobs,PHA of 0.28 mg CODPHA/mg COD, a XPHA of 55.6% VSS and a PrV of 757.3 mg CODPHA/L⋅d (550.0 mg PHA/L⋅d). The accumulated PHAs consisted mainly of 3-hydroxybutyrate. By using RSM, it was possible to predict crude glycerin concentrations and C:N ratios not tested here that will allow desirable values of PHA content in biomass or PHA productivity, which can be useful for designing PHA production with MMC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.