Abstract

The performance of new cellulose membranes, aminofunctionalized via a PEG spacer, as a solid support in the synthesis of peptide arrays is described. The new membranes are stable to trifluoroacetic acid (TFA) and strong aqueous base for days. These properties extend the scope of synthesis considerably, e.g., more efficient side chain cleavage protocols can be applied which yielded peptides of improved purity. For the first time, cellulose membranes with a loading as high as 5 micromol/cm2 were accessible. Additionally, newly developed polypropylene membranes with hydroxy- or amino functionalities were successfully employed for the SPOT synthesis of peptides and phosphopeptides. The membranes are compatible with antibody binding as well as enzymatic phosphorylation assays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call