Abstract
The quantitative analysis of zinc phosphate (ZnP) on the flame resistance of intumescent flame retardant coatings (IFRCs) is presented including cone calorimeter (CC) and pyrolysis kinetics, using aliphatic waterborne polyurethane (AWP) as the coating binder. The CC results show that an appropriate dosage (2 wt%) of ZnP in the AWP‐based coating constitutes an improved flame resistance, evidenced by the fire performance index increased from 0.41 to 0.71 seconds m2 kW−1, as well as the reduced fire growth index. The characterization analysis determines the dehydrated ZnP facilitates the formed amorphous char‐residue with a heat‐sink effect, leading to an increase in heat absorption, which climbs from the 253.00to 351.30 J·g−1. Besides, the pyrolysis kinetics verifies that the 3D Jander model (n = 2) mainly governs the whole pyrolysis process of pure coatings by the modified Coats‐Redfern integral method. The ZnP‐containing coating exerts an improved Eα corresponding to 95–200°C, which climbs from 24.96 to 35.80 kJ mol−1, leading to the formation of a continuous and compact char layer. It explores an effective quantitative analysis of the flame resistance of organic–inorganic hybrid IFRCs, deepening the flame‐retarding mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.