Abstract

By using the method of high-temperature solid-phase reaction, the new piezoceramic SrBi2Nb2-2xWxSnxO9 was obtained, where partial substitution of niobium (Nb) atoms with Sn4+ and W6+ atoms in the compound SrBi2Nb2O9 occurred in the octahedra of the perovskite layer (B-position). X-ray diffraction investigations showed that these compounds are single-phase SrBi2Nb2-2xWxSnxO9 (x = 0.1, 0.2) and two-phase SrBi2Nb2-2xWxSnxO9 (x = 0.3, 0.4), but all of them had the structure of Aurivillius-Smolensky phases (ASPs) with close parameters of orthorhombic unit cells. It corresponded to the space group A21am. The temperature dependences of the relative permittivity ε/ε0 and the tangent of the dielectric loss angle tan d were defined at various frequencies. It was found that doping SrBi2Nb2-2xWxSnxO9 (x = 0.1) improved the electrophysical properties of the compound: losses decreased, and the relative permittivity increased. This result was obtained for the first time. Moreover, a new result was obtained that indicated an improvement in the electrophysical properties of SrBi2Nb2O9 using the chemical element Sn (tin). This refutes the previously existing opinion about the impossibility to use Sn as a doping element.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.