Abstract

Atomic Parity Violation (APV) is usually quantified in terms of the weak nuclear charge QW of a nucleus, which depends on the coupling strength between the atomic electrons and quarks. In this work, we review the importance of APV to probing new physics using effective field theory. Furthermore, we correlate our findings with the results from neutrino-nucleus coherent scattering. We revisit signs of parity violation in polarized electron scattering and show how precise measurements on the Weinberg's angle give rise to competitive bounds on light mediators over a wide range of masses and interactions strengths. Our bounds are firstly derived in the context of simplified setups and then applied to several concrete models, namely Dark Z, Two Higgs Doublet Model-U(1)X and 3-3-1, considering both light and heavy mediator regimes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.