Abstract
Precision measurements of high energy top quarks at the LHC constitute a powerful probe of new physics. We study the effect of four fermion operators involving two tops and two light quarks on the high energy tail of the toverline{t} invariant mass distribution. We use existing measurements at a center of mass energy of 13 TeV, and state of the art calculations of the Standard Model contribution, to derive bounds on the coefficients of these operators. We estimate the projected reach of the LHC at higher luminosities and discuss the validity of these limits within the Effective Field Theory description. We find that current measurements constrain the mass scale of these operators to be larger than about 1–2 TeV, while we project that future LHC data will be sensitive to mass scales of about 3–4 TeV. We apply our bounds to constrain composite Higgs models with partial compositeness and models with approximate flavor symmetries. We find our limits to be most relevant to flavor non-universal models with a moderately large coupling of the heavy new physics states to third generation quarks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.