Abstract

Rejection of transplanted organs is a complex and highly dynamic immune process. Two-photon laser-scanning intravital microscopy (LSIM) allows for real-time, deep tissue, high-resolution imaging in physiological conditions. The recent application of this technology to study organ rejection started to provide a clearer picture of the spatiotemporal immunological dynamics of organ rejection. To date, LSIM has been applied to transplanted skin, islet, and kidney in mice, as well to constantly moving organs such as transplanted lung and heart. To characterize the dynamics of innate and adaptive immune cell infiltration, time-lapse imaging of various fluorescent-reporter mice was performed. Overall, these studies revealed differences between the anatomical location of infiltrating neutrophils and monocytes in various transplanted organs. In addition, the dynamics of lymphocytic infiltration revealed different transendothelial migration routes in vascularized versus nonvascularized transplanted tissues. LSIM is a very powerful tool that can be used to carefully dissect the immune cells dynamics in rejection and in tolerance induction in transplantation. Many dynamic biological processes can only be investigated using LSIM. Thus, LSIM promises to greatly enhance our knowledge in transplantation immunobiology and will help tailoring specific therapeutics in relation to the transplanted tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.