Abstract

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and low-energy ion scattering (LEIS) are recently attracting great interest in energy materials research due to their capabilities in terms of surface sensitivity and specificity, spatial resolution and their ability to analyse the isotopic chemical composition. This work shows the synergy provided by this powerful combination to further our understanding of the surface chemistry and structure that ultimately determines the electrochemical performance in advanced electro-ceramic materials for energy storage and energy conversion applications. In particular, this novel approach has been applied to the analysis of (Li3xLa2/3−x□1/3−2x)TiO3 perovskite materials used as the electrolyte in lithium batteries and (La, Sr)2CoO4+δ epitaxial thin films used as oxygen electrodes in solid oxide fuel cells and solid oxide electrolysers. The analysis of these two promising materials requires the development and optimisation of new analytical approaches that take advantage of the recent instrumental developments in order to characterise the outermost and near-surfaces at the atomic scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.