Abstract
ObjectivesTo determine whether dentin–adhesive interface stability would be improved by dimethyl sulfoxide (DMSO) wet-bonding and epigallocatechin-3-gallate (EGCG). MethodsEtched dentin surfaces from sound third molars were randomly assigned to five groups according to different pretreatments: group 1, water wet-bonding (WWB); group 2, 50% (v/v) DMSO wet-bonding (DWB); groups 3–5, 0.01, 0.1, and 1 wt% EGCG-incorporated 50% (v/v) DMSO wet-bonding (0.01%, 0.1%, and 1%EGCG/DWB). Singlebond universal adhesive was applied to the pretreated dentin surfaces, and composite buildups were constructed. Microtensile bond strength (μTBS) and interfacial nanoleakage were respectively examined after 24 h water storage or 1-month collagenase ageing. In situ zymography andStreptococcus mutans (S. mutans) biofilm formation were also investigated. ResultsAfter collagenase ageing, μTBS of groups 4 (0.1%EGCG/DWB) and 5 (1%EGCG/DWB) did not decrease (p > 0.05) and was higher than that of the other three groups (p < 0.05). Nanoleakage expression of groups 4 and 5 was less than that of the other three groups (p < 0.05), regardless of collagenase ageing. Metalloproteinase activities within the hybrid layer in groups 4 and 5 were suppressed. Furthermore, pretreatment with 1%EGCG/DWB (group 5) efficiently inhibited S. mutans biofilm formation along the dentin–adhesive interface. SignificanceThis study suggested that the synergistic action of DMSO wet-bonding and EGCG can effectively improve dentin–adhesive interface stability. This strategy provides clinicians with promising benefits to achieve desirable dentin bonding performance and to prevent secondary caries, thereby extending the longevity of adhesive restorations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.