Abstract
Fo×F1-ATPases of mitochondria, chloroplasts, and microorganisms catalyze transformation of proton motive force (the difference between the electrochemical potentials of hydrogen ion across a coupling membrane) to the free energy of ATP phosphoryl potential. It is often stated that Fo×F1-ATPases operate as reversible chemo-mechano-electrical molecular machines that provide either ATP synthesis or hydrolysis depending on particular physiological demands of an organism; the microreversibility principle of the enzyme catalysis is usually taken as a dogma. Since 1980, the author has upheld the view that the mechanisms of ATP synthesis and hydrolysis by the Fo×F1 complex are different (Vinogradov, A. D. (2000) J. Exp. Biol., 203, 41-49). In this paper, the author proposes a new model considering the existence in coupling membranes of two non-equilibrium isoforms of Fo×F1 unidirectionally catalyzing synthesis and/or hydrolysis of ATP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.