Abstract
Recent studies on the kernel function-based primal-dual interior-point algorithms indicate that a kernel function not only represents a measure of the distance between the iteration and the central path, but also plays a critical role in improving the computational complexity of an interior-point algorithm. In this paper, we propose a new class of parameterized kernel functions for the development of primal-dual interior-point algorithms for solving linear programming problems. The properties of the proposed kernel functions and corresponding parameters are investigated. The results lead to a complexity bounds of $${O\left(\sqrt{n}\,{\rm log}\,n\,{\rm log}\,\frac{n}{\epsilon}\right)}$$ for the large-update primal-dual interior point methods. To the best of our knowledge, this is the best known bound achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.