Abstract

A new parametrization scheme of DFT-D is proposed with the aim of devising a methodology for the study of graphitic material. The main feature of the new system is the geometry optimization within the fitting scheme. The DFT-D parameters are obtained for the benzene dimer, a good model molecule for graphitic systems. Very accurate CCSD(T) results are used as reference data for the benzene dimer, and the new method is shown to reproduce accurately its binding energies with small basis sets. After geometry optimization our new scheme performs better than the other methods. This approach generates proper geometries and accurate binding energies, even with small basis sets. We can expect this method to give similarly good results for larger graphitic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call