Abstract

A PDMS (Polydimethylsiloxane) microfluidic channel coupled with UV–vis fibre-optic spectrometer and new synthesized colorimetric probe was integrated into an optofluidic based Lab-on-a-chip device for highly sensitive and real-time quantitative measurements of fluoride ions (F¯). An ‘S’ shaped microchannel in a microfluidic device was designed to act as microreactor to facilitate the continuous reaction between synthetized colorimetric probe (sensor) and F¯ ions. Following this reaction, the UV–vis optical probe in the downstream detection zone of the microfluidic device was used to capture their spectrum and present as F¯ concentration in real-time conditions. An initial study of the developed colorimetric probe with multi-colour change with several binding and chromophore groups such as –OH, –NH and –NO2 groups confirmed its high sensitivity and selectivity for F¯ ions with a detection limit of 0.79 ppm. The performance of the developed optofluidic device was evaluated for the selective, sensitive detection of F¯ ions including real samples out-performing conventional methods. The technology has advantages such as low sample consumption, rapid analysis, high sensitivity and portability. Presented new Lab-on-a-chip device provides many competitive advantages for the real-time analysis of F¯ ions needed across broad sectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call