Abstract

A new NMR option for monitoring the mobility of organic contaminants in SOM in the solid state has been successfully applied for the first time. This recently available noninvasive technique, magic angle spinning pulsed-field gradient (MAS PFG) NMR, combines both NMR spectroscopy and diffusometry to selectively monitor the diffusion of compounds sorbed in porous media or polymer matrices. Using this technique, the diffusion of toluene in humic acid particles has been studied. Measurements were performed under varying temperatures from 25 to 80 degrees C. The obtained diffusion coefficients were found to be in good agreement with those obtained from computer simulations reported elsewhere. Our results show a strong influence of the interaction of toluene with humic acid on its diffusion in the matrix even at elevated temperatures of up to 80 degrees C. The Arrhenius plot of the diffusivities shows a decrease in the activation energy of diffusion above 50 degrees C by a factor of 3. This change of activation energy is attributed to a structural change in the humic acid matrix that influences the mobility of toluene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.