Abstract

Recently Plug-in hybrid electric vehicles (PHEVs) have gained increasing attention due to their ability to reduce the fuel consumption and emissions. In this paper a new efficient power management strategy is proposed for a series PHEV. According to the battery state of charge (SOC) and vehicle power requirement, a new rule-based optimal power controller with four different operating modes is designed to improve the fuel economy of the vehicle. Furthermore, the teaching-learning based optimization (TLBO) method is employed to find the optimal engine power and battery power under the specified driving cycle while the fuel consumption is considered as the fitness function. In order to demonstrate the effectiveness of the proposed method, four different driving cycles with various numbers of driving distances for each driving cycle are selected for the simulation study. The performance of the proposed optimal power management strategy is compared with the rule-based power management method. The results verify that the proposed power management method could significantly improve the fuel economy of the series PHEV for different driving conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.