Abstract
The deoxyribonucleic acid (DNA) dynamical equation, which emerges from the oscillator chain known as the Peyrard–Bishop (PB) model for abundant optical soliton solutions, is presented, along with a novel fractional derivative operator. The Kudryashov expansion method and the extended hyperbolic function (HF) method are used to construct novel abundant exact soliton solutions, including light, dark, and other special solutions that can be directly evaluated. These newly formed soliton solutions acquired here lead one to ask whether the analytical approach could be extended to deal with other nonlinear evolution equations with fractional space–time derivatives arising in engineering physics and nonlinear sciences. It is noted that the newly proposed methods’ performance is most reliable and efficient, and they will be used to construct new generalized expressions of exact closed-form solutions for any other NPDEs of fractional order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.