Abstract

A high-pressure optical cell has been designed that achieves an effective separation between the chemical sample and the pressurizing medium and system. This design limits possible sample contamination and catalytic effects under supercritical fluid sample conditions. Laser flash photolysis experiments were carried out on molybdenum hexacarbonyl dissolved in supercritical CO2. The thermal ring closure reaction of the species Mo(CO)5L, where L is 2,2′-bipyridine was found to proceed at rates comparable to those measured previously in liquid benzene or toluene. Much larger activation volumes were found for the reaction in supercritical CO2 than in liquid toluene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.