Abstract

Seafloor acoustic and photographic imagery combined with high- resolution bathymetry are used to investigate the geologic and tectonic relations between active and relict zones of hydrothermal venting in the TAG (Trans-Atlantic Geotraverse) hydrothermal field at 26°08′N on the Mid-Atlantic Ridge (MAR). The TAG field consists of a large, currently active, high-temperature mound, two relict zones (the Alvin and Mir zones), and an active low-temperature zone. The active mound and the Alvin relict zone lie along a series of closely-spaced, axis-parallel (NNE-trending) faults in an area of active extension east of the neovolcanic zone. The Alvin zone extends for 2.5 km along these faults from the valley floor onto the eastern wall, and consists of at least five mounds identified using DSL-120 sidescan sonar and bathymetric data. The existence of sulfide structures on most of these mounds is verified with near-bottom electronic still camera (ESC) images from the Argo-II deep-towed vehicle, and is confirmed in at least one case with collected samples. Two of these mounds were previously unidentified. The existence of these mounds extends the length of the Alvin zone by ~0.5 km to the south. Much of the Alvin relict zone appears to be buried by debris from a large mass wasting event on the eastern wall of the median valley. The Mir zone, located on normal fault blocks of the eastern valley wall, cannot be clearly identified in the sidescan data and no structural connections from it to the active mound or Alvin zone can be discerned. The active mound is located at the intersection of an older oblique fault set with the younger axis- parallel faults which extend into the Alvin relict zone, and no fresh volcanics are observed in the vicinity of the mound. The fact that both the active mound and the Alvin relict zone lie along the same set of active, axis-parallel faults suggests that the faults may be a major control on the location of hydrothermal activity by providing pathways for fluid flow from a heat source at the ridge axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.