Abstract

In ongoing efforts to study the ontogeny of gonadotropin-releasing hormone (GnRH) neurons, we serendipitously observed that increasing times of incubation in antibodies enhanced signal detection. Here, we describe significant differences in the early migration pattern, population dynamics, and growth cone morphology from published reports. The first immunoreactive GnRH cells were detected in the mouse at E10.75 (7.6 +/- 2.8 cells; morning after mating = E0.5), prior to the closure of the olfactory placode. Although half of these cells were in the medial wall of the olfactory pit, the other half had already initiated their migration, and approximately one quarter had reached the telencephalic vesicle. Although the migratory pattern of the GnRH cells after E11.00 was identical to that described previously, these earliest migrating cells traveled singly rather than in cords, with some reaching the presumptive preoptic area (posterior to the ganglionic eminence) by E11.75. The number of GnRH cells increased significantly (p < 0.05) to 777 +/- 183 at E11.75 and peaked at 1949.6 +/- 161.6 (p < 0.05) at E12.75. The adult population was approximately 800 cells distributed between the central nervous system (CNS) and the nasal region. Hence, the population of GnRH neurons during early development is much larger than previously appreciated; mechanisms for its decline are discussed. Neuritic extensions on the earliest GnRH neurons are short (30-50 microm) and blunt and may represent the leading edge of the moving cell. By E12.75, GnRH axons in the CNS had a ribboned or beaded morphology and increasingly more complex growth cones were noted from this time until the day of birth. The most complex growth cones were associated with apparent choice points along the axons' trajectory. By E13.75, GnRH axons were seen at the presumptive median eminence in all animals, and it was at this stage that the axons began to branch profusely. Branching, as well as the presence of growth cones, continued post-natally. These results provide further insights into the pathfinding mechanisms of GnRH cells and axons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.