Abstract
The work reports new observations concerning the gate and drain currents measured at off-state conditions in buried-type p-channel LDD MOSFET devices. Detailed investigation of the observed phenomena reveals that 1) the drain current can be separated into two distinct components: band-to-band tunneling in the gate-to-drain overlap region and collection of holes generated via impact ionization by electrons inside the oxide; and 2) the gate current can be separated into two distinct components: the hot electron injection into the oxide and the Fowler-Nordheim electron tunneling through the oxide, At low negative drain voltage, the dominant component of the drain current is the hole generation inside the oxide. At high negative drain voltage, the drain current is essentially due to band-to-band tunneling, and it is correlated with the hot-electron injection-induced gate current. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.