Abstract

Symmetry is presented in many works involving differential and integral equations. Whenever a human is involved in the design of an integral equation, they naturally tend to opt for symmetric features. The most common examples are the Green functions and linguistic kernels that are often designed symmetrically and regularly distributed over the universe of discourse. In the current study, the authors report a study on boundary value problem (BVP) for a nonlinear integro Volterra–Fredholm integral equation with variable coefficients and show the existence of solution by applying some fixed-point theorems. The authors employ various numerical common approaches as the homotopy analysis methodology established by Liao and the modified Adomain decomposition technique to produce a numerical approximate solution, then graphical depiction reveals that both methods are most effective and convenient. In this regard, the authors address the requirements that ensure the existence and uniqueness of the solution for various variations of nonlinearity power. The authors also show numerical examples of how to apply our primary theorems and test the convergence and validity of our suggested approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.