Abstract

The process of neutrinoless double beta decay (0νββ) plays a key role in modern neutrino physics. Experiments on 76Ge 0νββ-decay using germanium semiconductors are at the forefront in this field. Due to the extremely low count rates expected for this rare decay, any kind of background event in the detector, especially at energies close to Qββ=2039.006 keV must be avoided. Therefore, a careful investigation on the neutron-induced background was carried out. In this scope experiments investigating the inelastic neutron excitation of the lower lying and the 69th excited level of 76Ge have been performed. The existence of a 2040.7 keV gamma-ray, that occurs by the de-excitation of the 69th excited level, was confirmed. Interfering background from 68Ge was studied via cross-section measurements of the natGe(n,jn)68Ge reaction using quasi-monoenergetic neutrons and accelerator mass specrometry for 68Ge detection. In order to explore the matrix element for the transition between the 76Ge-76As ground states, the electron–capture of 76As has been measured for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.