Abstract

The synthesis, properties, and electroluminescent device applications of a series of five new diphenylanthrazoline molecules 1a-1e are reported. Compounds 1b, 1c, and 1d crystallized in the monoclinic system with the space groups P2(1)/c, C2/c, and P2(1)/c, respectively, revealing highly planar molecules. Diphenylanthrazolines 1a-1e have a formal reduction potential in the range -1.39 to -1.58 V (versus SCE) and estimated electron affinities (LUMO levels) of 2.90-3.10 eV. Compounds 1a-1e emit blue light with fluorescence quantum yields of 58-76% in dilute solution, whereas they emit yellow-green light as thin films. The diphenylanthrazoline molecules as the emissive layers in light-emitting diodes gave yellow light with a maximum brightness of 133 cd/m(2) and an external quantum efficiency of up to 0.07% in ambient air. Bilayer light-emitting diodes using compounds 1a-1e as the electron-transport layer and poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene) as the emissive layer had a maximum external efficiency of 3.1% and 2.0 lm/W and a brightness of up to 965 cd/m(2) in ambient air. These results represent enhancements of up to 50 times in external quantum efficiency and 17 times in brightness when using 1a-1e as the electron-transport materials in polymer light-emitting diodes. These results demonstrate that the new diphenylanthrazolines are promising n-type semiconductors for organic electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.