Abstract

Regarding that the chronic use of commonly available non-steroidal and anti-inflammatory drugs (NSAIDs) is often restricted by their adverse effects, there is still a current need to search for and develop new, safe and effective anti-inflammatory agents. As a continuation of our previous work, we designed and synthesized a series of 18 novel N-substituted-1,2,4-triazole-based derivatives of pyrrolo[3,4-d]pyridazinone 4a-c-9a-c. The target compounds were afforded via a convenient way of synthesis, with good yields. The executed cell viability assay revealed that molecules 4a-7a, 9a, 4b-7b, 4c-7c do not exert a cytotoxic effect and were qualified for further investigations. According to the performed in vitro test, compounds 4a-7a, 9a, 4b, 7b, 4c show significant cyclooxygenase-2 (COX-2) inhibitory activity and a promising COX-2/COX-1 selectivity ratio. These findings are supported by a molecular docking study which demonstrates that new derivatives take position in the active site of COX-2 very similar to Meloxicam. Moreover, in the carried out in vitro evaluation within cells, the title molecules increase the viability of cells pre-incubated with the pro-inflammatory lipopolysaccharide and reduce the level of reactive oxygen and nitrogen species (RONS) in induced oxidative stress. The spectroscopic and molecular modeling study discloses that new compounds bind favorably to site II(m) of bovine serum albumin. Finally, we have also performed some in silico pharmacokinetic and drug-likeness predictions. Taking all of the results into consideration, the molecules belonging to series a (4a-7a, 9a) show the most promising biological profile.

Highlights

  • In our former studies, we have reported the synthesis and comprehensive biological evaluation of new 1,3,4-oxadiazole-based derivatives of pyrrolo [3,4-d]pyridazinone designed as a new class of COX inhibitor

  • Being aware that there is an increased level of free oxygen radicals and nitric oxide (NO) in inflammation, we evaluated whether the tested compounds exhibit antiradical activity in the dichlorofluorescin diacetate (DCF-DA) and Griess assays and assessed the levels of reactive oxygen species (ROS) and NO, respectively (Figure 6A,B)

  • The present paper describes the design, synthesis and complex biological, computational and spectroscopic studies of novel, three series of N-substituted-1,2,4-triazolebased derivatives of pyrrolo[3,4-d]pyridazinone

Read more

Summary

Introduction

The inflammatory response that leads to homeostasis restoration is provoked by various exogenous and endogenous harmful stimuli and inducers, such as injury, tissue malfunctioning or infection. Purpose and aftermath depend on the trigger. Characteristic symptoms that occur in inflamed areas are edema, reddening, hypersensitivity and often pain, which plays an important warning and protective role and promotes the organism’s reflex and behavioral response to minimize the effects of tissue damage. A lot of those aforementioned agents, besides affecting the target cells and tissues, could induce the production of other elements. The best possible understanding and explanation of the mechanisms responsible for inflammatory mediators’ expression, action and mutual dependence is essential in the effective management of different inflammatory diseases

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call