Abstract

PurposeThis study examines the capacity to detect glaucoma of inner macular layer thickness measured by spectral-domain optical coherence tomography (SD-OCT) using a new normative database as the reference standard.MethodsParticipants (N = 148) were recruited from Leuven (Belgium) and Zaragoza (Spain): 74 patients with early/moderate glaucoma and 74 age-matched healthy controls. One eye was randomly selected for a macular scan using the Spectralis SD-OCT. The variables measured with the instrument's segmentation software were: macular nerve fiber layer (mRNFL), ganglion cell layer (GCL), and inner plexiform layer (IPL) volume and thickness along with circumpapillary RNFL thickness (cpRNFL). The new normative database of macular variables was used to define the cutoff of normality as the fifth percentile by age group. Sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) of each macular measurement and of cpRNFL were used to distinguish between patients and controls.ResultsOverall sensitivity and specificity to detect early-moderate glaucoma were 42.2% and 88.9% for mRNFL, 42.4% and 95.6% for GCL, 42.2% and 94.5% for IPL, and 53% and 94.6% for RNFL, respectively. The best macular variable to discriminate between the two groups of subjects was outer temporal GCL thickness as indicated by an AUROC of 0.903. This variable performed similarly to mean cpRNFL thickness (AUROC = 0.845; P = 0.29).ConclusionsUsing our normative database as reference, the diagnostic power of inner macular layer thickness proved comparable to that of peripapillary RNFL thickness.Translational RelevanceSpectralis SD-OCT, cpRNFL thickness, and individual macular inner layer thicknesses show comparable diagnostic capacity for glaucoma and RNFL, GCL, and IPL thickness may be useful as an alternative diagnostic test when the measure of cpRNFL shows artifacts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.