Abstract

Ni-based quaternary disk catalysts were manufactured for low-temperature CO2 methanation reactions, and the reaction activity was examined with respect to the thermal treatment conditions. By applying varying reduction and combustion treatments, the same catalysts were compared, and the Ni oxidation conditions and physical features were confirmed through X-Ray diffraction, scanning electron microscopy, and energy dispersive X-ray analyses. In addition, oxygen adsorption/desorption changes were measured by temperature-programmed reduction after pre-treating with oxygen and hydrogen. The reduction treatment catalyst showed a conversion of 20% at 280 °C, and the 70% calcined catalyst did not form a NiO crystalloid. The activation of the catalyst increased because of NiO movement on the catalyst surface, which enabled easy transformation to metallic Ni. The prepared catalyst is a highly reactive, yet stable, candidate for practical catalytic CO2 methanation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.