Abstract

Recent findings revealed a reactive neurogenesis after lesions and in several models of disease. After unilateral vestibular neurectomy (UVN), we previously reported gamma-aminobutyric acid (GABA)ergic neurons are upregulated in the vestibular nuclei (VN) in the adult cat. Here, we ask whether this upregulation of GABAergic neurons resulted from a reactive neurogenesis. To determine the time course of cell proliferation in response to UVN, 5-bromo-2'-deoxyuridine (BrdU) was injected 3 h, 1, 3, 7, 15 and 30 days after UVN. We investigated the survival and differentiation in UVN cats injected with BrdU at 3 days and perfused 30 days after UVN. Results show a high number of BrdU-immunoreactive nuclei in the deafferented VN with a peak at 3 days after UVN and a decrease at 30 days. Most of the newly generated cells survived up to 1 month after UVN and gave rise to a variety of cell types. Confocal analysis revealed three cell lineages: microglial cells (OX 42/BrdU-immunoreactive cells); astrocytes [glial fibrillary acidic protein (GFAP)/BrdU-immunoreactive cells]; and neurons (NeuN/BrdU-immunoreactive cells). That UVN induced new neurons was confirmed by an additional marker (nestin) expressed by neural precursor cells. We show that most of the newly generated neurons have a GABAergic phenotype [glutamate decarboxylase (GAD)-67/BrdU-immunoreactive cells]. Morphological analysis showed two subtypes of GABAergic neurons: medium and small (30 vs. 10 microm, respectively). This is the first report of reactive neurogenesis in the deafferented VN in the adult mammalian CNS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call