Abstract

Two-motor drive system is a multi-variable, nonlinear and strongly coupled system. A new synchronous control strategy for two-motor system is proposed based on radial basis function (RBF) neural network inverse with particle swarm optimization. To enhance the system performance, the particle swarm optimization is adopted to optimize the RBF nerve center, an optimized RBF neural network inverse and a two-motor system is connected in series to form composite pseudo-linear system. This two-motor synchronous system can be decoupled into two independent linear subsystems for speed and tension. Then, the decoupled control is implemented by designing a linear closed-loop adjustor. The experimental results verify that the two-motor synchronous system can be decoupled well for speed and tension based on the proposed neural network inverse system. Also, the proposed system can deal with external disturbances with strong robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.